메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
Korean Institute of Information Scientists and Engineers 정보과학회논문지 : 데이타베이스 정보과학회논문지 : 데이타베이스 제33권 제6호
발행연도
2006.11
수록면
600 - 619 (20page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (5)

초록· 키워드

오류제보하기
최근에 센서 및 모바일 장비들의 발전으로 인하여 이러한 장비들로부터 생성된 대량의 데이타 스트림(data stream)의 처리가 중요한 연구 과제가 되고 있다. 데이타 스트림 중에서 연속되는 시점에 얻어진 실수 값들의 스트림을 스트리밍 시계열(streaming time-series)이라 한다. 스트리밍 시계열에 대한 유사성 매칭은 여러 가지 고유 특성에 의하여 기존의 시계열 데이타와는 다르게 처리되어야 한다. 본 논문에서는 정규화 변환(normalization transform)을 지원하는 스트리밍 시계열 매칭 문제를 해결하기 위한 효율적인 알고리즘을 제안한다. 기존에는 스트리밍 시계열을 아무런 변환 없이 비교하였으나, 본 논문에서는 정규화 변환된 스트리밍 시계열을 비교한다. 정규화 변환은 절대적인 값은 달라도 유사한 변동 경향을 가지는 시계열 데이타를 찾기 위하여 유용하다. 본 논문의 공헌은 다음과 같다. (1) 기존의 정규화 변환을 지원하는 서브시퀀스 매칭 알고리즘[4]에서 제시된 정리(theorem)를 이용하여 정규화 변환을 지원하는 스트리밍 시계열 매칭 문제를 풀기 위한 간단한 알고리즘을 제안한다. (2) 검색 성능을 향상시키기 위하여 간단한 알고리즘을 k (≥ 1) 개의 인덱스를 이용하는 알고리즘으로 확장한다. (3) 주어진 k에 대하여, 확장된 알고리즘의 검색 성능을 최대화하기 위해 k 개의 인덱스를 생성할 최적의 윈도우 길이를 선택하기 위한 근사 방법(approximation)을 제시한다. (4) 스트리밍 시계열의 연속성(continuity) 개념[8]에 기반하여, 현재 시점 t?에서의 스트리밍 서브시퀀스에 대한 검색과 동시에 미래 시점 (t? + m - 1) (m ≥ 1)까지의 검색 결과를 한번의 인덱스 검색으로 구할 수 있도록 재차 확장한 알고리즘을 제안한다. (5) 일련의 실험을 통하여 본 논문에서 제안된 알고리즘들 간의 성능을 비교하고, k 및 m 값의 변화에 따라 제안된 알고리즘들의 검색 성능 변화를 보인다. 본 논문에서 제시한 정규화 변환 스트리밍 시계열 매칭 문제에 대한 연구는 이전에 수행된 적이 없으므로 순차 검색(sequential scan) 알고리즘과 성능을 비교한다. 실험결과, 제안된 알고리즘은 순차 검색에 비하여 최대 13.2배까지 성능이 향상되었으며, 인덱스의 개수 k가 증가함에 따라 검색 성능도 함께 증가하였다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 문제 정의
4. 제안된 알고리즘
5. 윈도우 길이 선택
6. 알고리즘의 재차 확장
7. 성능 평가
8. 결론
참고문헌

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017548375