메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
협력 필터링은 그 유용성으로 인해 현재 학문적으로나 상업적으로 널리 사용되고 있지만 확장성 문제, 평가 데이타의 희박성 문제, 초기 평가 문제 등을 안고 있다. 본 논문에서는 이러한 문제들을 일부 해결하기 위해 에이전트 간 협력에 기초한 분산 협력필터링 방법을 제안하였다. 제안 방법에서는 사용자의 평가정보를 에이전트가 지역 데이타베이스에 보관하고 이 정보를 친구들에게만 전파하는 방법을 사용함으로써 사용자 증가에 따른 확장성 문제를 해결하고자 하였다. 그리고 평가 데이타 부족에 따른 추천 질 저하를 줄이기 위해 친구 에이전트의 의견을 반영하는 방법을 사용하였고 새로운 사용자에 대해서도 추천이 가능토록 하기 위해 사용자 프로파일을 이용한 협력필터링 방법을 사용하였다. 실험결과, 본 제안 방법이 확장성뿐만 아니라 데이타 희박성 문제 및 새로운 사용자 문제에도 도움이 됨을 확인할 수 있었다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 시스템 구조
4. 에이전트기반 분산 협력필터링
5. 성능 평가
6. 결론
참고문헌

참고문헌 (24)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017548284