메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
Korean Institute of Information Scientists and Engineers 한국정보과학회 학술발표논문집 한국정보과학회 2006 가을 학술발표논문집 제33권 제2호(B)
발행연도
2006.10
수록면
453 - 458 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 연구에서는 몽타주와 얼굴사진의 유사도를 산출하여, 유사도에 따라 얼굴사진의 순위를 정하는 방법을 제안한다. 먼저, 얼굴부위를 눈썹, 눈, 코, 입, 이마 등 27개로 나누고, 부위별 특징은 196개로 분류한다. 눈 부위의 특징을 예로 들면, 쌍꺼풀, 외꺼풀, 큰 눈, 작은 눈, 동그란 눈, 긴 눈, 처진 눈, 치켜 올라간 눈 등으로 분류할 수 있다. 나아가서, 200명의 얼굴사진 각각에 대해 특징을 분류하여, DB로 구축한다. 임의의 얼굴에 대해 몽타주를 작성하고, 몽타주에 대한 특징을 선택하여, DB의 얼굴 사진과 유사도를 산출하여, 순위를 정한다. 10명의 얼굴에 대해 몽타주를 작성하고, DB의 얼굴사진을 유사도에 따라 순위를 정한 결과, 1위 ~ 6위 사이에 동일인물이 검색되었으며, 평균은 1.9위이었다. 이 결과는 몽타주를 작성하여 200매 얼굴의 유사도 순위를 정하면, 평균적으로는 2위에서, 적어도 6위 이내에서 동일 얼굴을 검색할 수 있다는 의미이다. 몽타주를 이용한 수사는 몽타주를 배포하여 시민의 신고에 의존하는 수동적인 방법을 사용하고 있으나, 이 방법을 이용하면, 용의자를 압축하여 검거하는 능동적인 수사가 가능하다.

목차

요약
1. 서론
2. 얼굴부위별 특징의 분류
3. 얼굴사진DB의 부위별 특징 선택
4. 몽타주 작성
5. 몽타주의 부위별 특징 선택
6. 유사도 산출과 검색 실험
7. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017398271