메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
디지털 카메라의 대중화와 고용량 저장매체의 보편화로 인해 대중들은 손쉽게 디지털 사진 촬영이 가능하게 되었다. 디지털 사진은 필름 사진과 달리 촬영을 하는데 있어 비용이 들지 않을 뿐만 아니라 플래쉬 메모리의 증가로 인해 다수의 사진들을 촬영할 수 있게 되었으나 그만큼 많은 사진들을 관리하고 분류하는 것은 쉽지 않은 일이 되었다. 따라서 디지털 사진을 자동으로 분류하고 관리하는 기능은 중요한 과제가 되었지만, 현재까지 나온 방법들은 사진 내의 객체가 확대, 축소 및 이동하거나 배경이 바뀌는 영상에 있어서 정확한 유사도를 측정하여 분류하는데 어려움이 있었다. 본 논문에서는 이와 같은 어려움을 보완한 디지털 사진의 클러스터링 알고리즘을 제안한다. 입력영상을 그리드 형태로 나누어 각 블록별로 측정한 유사도 값을 바탕으로 클러스터링하며, 이때 디지털 사진 내에 포함되어 있는 촬영정보인 EXIF를 이용하여 입력 영상에 따라 적응적(adaptive)으로 그리드를 나누어 비교한다. 또한, 영상에 따라 각기 다른 색상의 분포 정도를 고려해 색상 가중치를 고려하여 사진을 비교함으로써, 영상의 고수준(high-level) 분석에서처럼 객체와 배경을 추출하여 따로 분리하지 않고도 객체의 배경이 다른 사진들을 저수준(low-level)에서 분석이 가능토록 하였다. 제안한 방법으로 실험한 결과 객체의 크기 및 이동이나 배경에 큰 영향을 받지 않으면서 입력영상들을 클러스터링 할 수 있었다.

목차

요약
1. 서론
2. 관련연구
3. 디지털 사진의 블록단위 그리드 유사도 분석
4. 제안하는 알고리즘
5. 실험 결과
6. 결론 및 향후연구
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017398251