메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
인터넷의 비약적인 발전으로 많은 강의 자료가 존재하게 되었으며, 어느 누구나 손쉽게 강의 자료를 구할 수 있게 되었다. 하지만 사용자는 단순히 많은 정보만을 원하는 것이 아니라 정확한 정보를 얻기를 원한다. 이에 본 논문에서는 기존의 단어 빈도수 기반의 분류 방식이 아닌 개념적 분류 방식으로 온톨로지를 이용하여 코스웨어를 분류해보고자 한다. 온톨로지로는 어휘적 온톨로지의 일종인 WordNet의 과목에 대한 계층적 구조를 활용하였다. 실험 데이터로는 강의 자료 중 파워포인트로 작성된 코스웨어를 이용하였으며, 코스웨어의 메타데이터들과 과목들간의 개념적 거리 및 밀도를 측정하여 코스웨어를 분류하였다. 또한 WordNet상의 어휘 확장을 통하여 분류과목 확장이 가능함을 보였다.

목차

요약
1. 서론
2. 관련연구
3. 제안한 방법
4. 온톨로지 확장
5. 결론
Acknowledgement
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017398004