메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국콘텐츠학회 한국콘텐츠학회논문지 한국콘텐츠학회논문지 제6권 제10호
발행연도
2006.10
수록면
9 - 16 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 연속음성인식의 음향모델 출력을 이용하여 뉴스 데이터를 분석하였다.
실험에 사용된 뉴스 데이터베이스는 2,093개의 기사로 구성되어 있다. 기존의 한국어 연속음성인식은 열악한 언어모델 때문에 낮은 인식성능을 보여 뉴스 데이터 분석에 적합하지 않다. 본 논문에서는 이를 보완하기 위해서 상대적으로 견인한 음향모델의 인식결과를 후처리하여 핵심어 정보 파일을 만들었다.
음향모델의 출력레벨 문턱치가 100일 때 전체 인식대상 형태소의 86.9%가 인식되었다. 동일한 조건에 길이정보 기반 정규화를 적용하였더니 81.25%가 인식되었다. 정규화의 목적은 긴 길이의 형태소를 보상하는 것이다. 실험결과, 인식대상 형태소 인식률은 75.13%였다. 그리고 5,040?의 뉴스 데이터에서 314?의 핵심어 정보 파일이 만들어졌다. 이것은 절대적인 정보량이 93.8% 감소한 것이다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 뉴스 데이터베이스
Ⅲ. 뉴스 데이터 분석 : 전처리
Ⅳ. 뉴스 데이터 분석 : 연속음성인식
Ⅴ. 실험결과
Ⅵ. 결론
참고문헌
저자소개

참고문헌 (9)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-004-017380379