메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
분류검색 방법은 색인검색 방법과 함께 중요한 요소로서 웹 검색 엔진에서 지원되고 있다. 사용자가 분류나 색인검색 방법 중 하나를 이용하여 원하는 검색결과를 찾지 못하면 다른 검색방법을 이용하여 찾을 수 있도록 대부분의 검색엔진에서는 두 가지 방법 모두 지원하고 있다. 색인검색 방법에서는 검색결과의 재현율이 높지만 검색결과가 너무 많이 나오기 때문에 원하는 검색결과를 찾아내는 것이 어렵다는 단점이 있다. 분류검색 방법은 찾고자 하는 문서의 해당 분류가 애매모호하거나 명확하게 알지 못할때에는 문서를 찾지 못하는 경우가 빈번히 발생한다. 즉, 검색결과의 정확도는 높으나 재현율이 떨어지는 단점이 있다. 본 논문은 이러한 문제점을 해결하기 위해서 분류와 검색어간의 관계를 퍼지논리를 이용하여 정량적으로 계산하고 이를 바탕으로 범주간의 함의관계를 유도함으로써 동적인 범주체계를 구성하는 새로운 방법을 제시한다. 이 방법의 장점은 범주간의 함의관계를 유사한 하위범주로 간주함으로써 분류검색 결과의 재현율을 높일 수 있다는 것이다.

목차

요약
Abstract
1. 서론
2. 관련연구
3. 퍼지 이론
4. 동적인 분류 체계
5. 실험결과
6. 결론
사사
참고문헌
저자소개

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017182339