메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한건축학회 ARCHITECTURAL RESEARCH ARCHITECTURAL RESEARCH Vol.8 No.1
발행연도
2006.6
수록면
77 - 84 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In spite of enormous increase in data generation, its practical usage in the construction sector has not been prevalent enough compared to those of other industries. The author would explore the obstacles against efficient data application in the arena of expenditure forecasting, and suggest a forecasting method by applying Case-based Reasoning (CBR). The newly suggested method in the research, enables project managers to forecast monthly expenditures with less time and effort by retrieving and referring only projects of a similar nature, while filtering out irrelevant cases included in database. Among 99 projects collected, the cost data from 88 projects were processed to establish a new forecasting model. The remaining 10 projects were utilized for the validation of the model. From the comprehensive study, the choice of the numbers of referring projects was investigated in detail. It is concluded that selecting similar projects at 12~19 % out of the whole database will produce a more precise forecasting.
The new forecasting model, which suggests the predicted values based on previous projects, is more than just a forecasting methodology; it provides a bridge that enables current data collection techniques to be used within the context of the accumulated information. This will eventually help all the participants in the construction industry to build up the knowledge derived from invaluable experience.

목차

Abstract
1. INTRODUCTION
2. LITERATURE REVIEW
3. DEVELOPMENT OF THE FORECASTING METHODOLOGY BASED-ON CASE-BASED REASONING
4. VALIDATION OF THE NEWLY PROPOSED METHODOLOGY
5. CONCLUSION
REFRENCES

참고문헌 (9)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-540-015657896