메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
세포는 환경 변화 및 자극으로부터 자신을 보호하기 위해 유전자가 발현하여 생명을 유지 시스템을 갖고 있다. 유전자의 발현은 비정상적인 상태의 세포를 환경을 조절, 변화시켜 정상으로 바꾸기 위한 기능, 발달단계에 필요한 기능 등 생명현상에 필요한 특수 역할을 수행한다. 따라서 각 유전자의 기능을 아는 것은 생물학적으로 상당히 의미 있는 일이다. 본 논문에서는 유전자 기능을 알아보기 위해 발현 패턴을 통해 같을 때, 유사한 형태 혹은 시차를 갖고 동일한 형태로 발현하는 유전자들은 같은 기능을 한다는 가정을 하였다. 이 가정에 기반하여 각 유전자들을 기능에 따라 분류하였다. (1) IFSA선형 모델을 적용하여 데이타를 잘 나타내 줄 수 있는 특징 패턴을 찾았으며 (2) 이 특징 패턴으로부터 본 논문에서 제안한 Membership Scoring Function을 이용하여 유전자를 필터링(filtering) 하였다. 이 유전자들은 기존의 ICA(Independent Component Analysis) 방법에서 보다 IFSA 방법이 더 효과적으로 각 기능에 따른 유전자 그룹을 찾아내줌을 GO(Gene Ontology)에서 확인할 수 있었다. 이는 시차 혹은 위상 변화에 상관없이 데이타를 잘 나타낼 수 있는 IFSA의 특성이, ICA보다 생물학적인 변수를 더 고려해 줄 수 있기 때문이라고 생각된다[1]. 이 논문의 또 다른 주요 작업은 유전자의 상호작용 관계로부터 유전자 네트웍을 얻어내는 것이다. 유전자 네트웍은 같은 그룹 내에서 유전자간의 상관 계수를 구하고 가장 높은 상관도를 보이는 유전자쌍을 연결시켜 얻게되었다. 이 네트웍 역시 GO 해석에서 그 유효성을 확인하였다.

목차

요약
Abstract
1. INTRODUCTION
2. METHODS
3. RESULTS
4. DISCUSSION
References
저자소개

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-015517838