메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 외란이나 시스템의 파라미터 변동 및 불확실성 등이 존재하는 자동화 설비시스템을 강인하고 정밀하게 제어할 수 있도록 하기 위해 동적 신경망 처리기(DNP)라 불리우는 신경망 제어기를 설계하였다. 자동화 설비시스템에서 부품의 조립, 가공 등 복잡하고 정교한 임무를 수행시키기 위해서는 end-effector의 이동경로 궤적에 대한 추적제어 뿐만 아니라 목표물에 대하여 접촉하는 힘의 궤적에 대한 추적 제어가 필수적이다. 또한 자동화 설비시스템의 매니플레이터에 역기구학적인 좌표변환을 계산하기 위한 학습구조를 개발하였으며, DNP가 이용될 수 있는 예를 설명하고자 한다. 제안된 동적 신경망인 DNP의 구조와 학습 알고리즘을 제시하고 컴퓨터 모의실험을 통해 DNP 학습의 성능을 확인한다.

목차

요약
Abstract
1. 서론
2. 신경 부차집단에 기초한 DNP
3. 자동화 설비시스템을 위한 역기구학적 변환의 온 라인 학습
4. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-565-015503352