메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국콘텐츠학회 한국콘텐츠학회논문지 한국콘텐츠학회논문지 제6권 제1호
발행연도
2006.1
수록면
24 - 31 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Temporal 데이터의 클러스터링 방법론 중의 하나로 모델기반 방법론이 있다. 이는 각 클러스터에 대하여 오토마타기반의 모델을 가정하는 것이다. 개별 모델을 추출하기 위해서는 먼저 전체 데이터에 대한 적합한 모델을 찾는 것이 필요하다. 전체에 대한 모델은 데이터집합에 대한 최적의 클러스터의 수를 결정함으로 개별 모델 구축의 준비를 완료한다. 본 연구에서는 클러스터 수를 결정하기 위한 기준인 베이지안 정보기준(BIC : Bayesian Information Criterion) 근사법의 활용도를 검증하고 데이터 크기와 BIC 값의 상관관계를 파악함으로 탐색 효율을 높이는 방안을 제안한다.
실험에서는 인위적 모델을 통하여 생성된 인공적인 여러 형태의 데이터집합을 활용하여 BIC 근사 측도의 활용성에 대해 살펴보았다. 실험결과에서 보여주는 것처럼 BIC 근사 측도는 데이터의 크기가 비교적 클 경우에 올바른 파티션의 사이즈를 추정함을 확인하였다.

목차

요약

Abstract

Ⅰ. 서론

Ⅱ. 배경 연구

Ⅲ. Temporal 데이터의 클러스터링

Ⅳ. 실험

Ⅴ. 결론

참고문헌

저자소개

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-004-015338213