메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국음성학회 음성과학 음성과학 제12권 3호
발행연도
2005.9
수록면
105 - 114 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
It was verified that a speaker verification system improved its performances of EER by regularizing log likelihood ratio, using background speaker models. Recently the wireless mobile phones are becoming more dominant communication terminals than wired phones. So the need for building a speaker verification system on mobile phone is increasing abruptly. Therefore in this paper, we had some experiments to examine the performance of speaker verification based on mobile phone’s voices. Especially we are focused on the performance variations in EER(Equal Error Rate) according to several background speaker’s characteristics, such as selecting methods(MSC, MIX), number of background speakers, aging factor of speech database. For this, we constructed a speaker verification system that uses GMM(Gaussin Mixture Model) and found that the MIX method is generally superior to another method by about 1.0% EER. In aspect of number of background speakers, EER is decreasing in proportion to the background speakers populations. As the number is increasing as 6, 10 and 16, the EERs are recorded as 13.0%, 12.2%, and 11.6%. An unexpected results are happened in aging effects of the speech database on the performance. EERs are measured as 4%, 12% and 19% for each seasonally recorded databases from session 1 to session 3, respectively, where duration gap between sessions is set by 3 months. Although seasons speech database has 10 speakers and 10 sentences per each, which gives less statistical confidence to results, we confirmed that enrolled speaker models in speaker verification system should be regularly updated using the ongoing claimant’s utterances.

목차

ABSTRACT

1. 서론

2. 화자인증 시스템의 구성

3. 음성 DB

4. 실험 및 결과

5. 결론 및 향후 과제

참고문헌

저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-701-015328771