메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한설비공학회 설비공학논문집 空氣調和·冷凍工學 論文集 제7권 제1호
발행연도
1995.2
수록면
42 - 51 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In order to establish a theoretical basis for the analyses of transient behaviors in stratified thermal storage tanks, analytical approaches to an improved one-dimensional model are made. In the present model the storage tank is treated as a finite region with an adiabatic tank exit, whereas it has been considered as a simple semi-infinite region previously. Application of the Laplace transformation and the Inversion theorem to the governing equations makes it possible to obtain an exact infinite-series solution, which is convergent only at sufficiently large time. Accordingly a complementary solution which is available for short times, i.e., the time range of this study is sought by an approximate method. The approximate solution which is rigorously validated through the examination of neglected terms in the solution procedure agrees quite well with the exact one. Moreover, it is simpler to use and more convenient to interpret the physical meaning of the solution. Comparison of the present solution with the previous ones shows relatively large difference near the tank bottom, which results from the more realistic boundary condition adopted in the present model. Some representative results by the approximate solution including effects of the Peclet number on temperature distrbutions are illustrated to show the utility of this study. In consequence, it is expected that the present results based on the improved model replace the foregoing ones as a new theoretical reference for studies of thermal stratification fields.

목차

Abstract

1. 서론

2. 해석

3. 결과에 대한 고찰

4. 결론

참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2010-553-001510159