메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한전자공학회 전자공학회논문지-CI 전자공학회논문지 CI편 제43권 제1호
발행연도
2006.1
수록면
17 - 26 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 은닉 마르코프 모델 (HMM : hidden Markov model)을 이용한 제스처 인식 방법을 제안하고, 이를 게임 시스템의 인터페이스로 적용한 사례를 소개한다. 제안된 방법은 다음의 두 가지 특징을 가진다. 첫 번째는 사전에 분할된 데이터열을 입력으로 사용하는 기존의 방법과는 달리, 제안된 방법은 카메라로부터 입력되는 비디오 스트림을 HMM의 입력으로 사용한다는 것이다. 두 번째는 제안된 HMM은 제스처의 분할과 인식을 동시에 수행한다는 것이다. 제안된 방법에서 사용자의 제스처는 13개의 제스처들을 인식하는 13개의 specific-HMM들을 결합하는 하나의 통합된 HMM을 통해 인식된다. 제안된 HMM은 사용자의 머리와 양손의 2D-위치 좌표로 구성된 포즈 심볼들의 열을 입력받는다. 그리고 새로운 포즈가 입력될 때마다, HMM의 상태 확률 값을 갱신한다. 그때, 만약 특정 상태의 확률 값이 미리 정해둔 임계치보다 큰 경우, 그 특정 상태를 포함하고 있는 제스처로 인식한다. 제안된 방법의 정당성을 입증하기 위하여, 제안된 방법은 Quake II라는 컴퓨터 게임에 적용되었다. 실험결과는 제안된 방법이 높은 인식 정확률과, 계산 시간을 확연하게 감소시킬 수 있었음을 보여주었다.

목차

요약

Abstract

Ⅰ. 서론

Ⅱ. 특징 추출

Ⅲ. 포즈 분류

Ⅳ. 제스처 인식

Ⅴ. 구현

Ⅵ. 실험 결과

Ⅶ. 결론

참고문헌

저자소개

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2010-569-001509496