메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
LDA는 클래스간 퍼진 정도와 클래스내 퍼진 정도의 비를 최대화하는 변환를 구하는 데이타 구분 기술이다. LDA는 여러 가지 응용에 성공적으로 응용되었지만 그 모델의 단순성과 관련된 두 가지 한계를 가지고 있다. 첫째는 각 클래스의 데이타가 가우시안 분포를 가진다고 가정되므로 복잡한 분포를 갖는 데이타를 구분하는데 실패한다는 것이다. 둘째는 LDA가 클래스의 전체 범위에 대해서 단지 하나의 변환만을 주므로 클래스 기반의 정보를 잃게 된다는 것이다. 본 논문은 위의 문제들을 극복하는 세가지 확장들을 제안한다. 첫 번째 확장은 더 복잡한 분포를 표현할 수 있는 PCA 혼합 모형을 이용하여 클래스 내 퍼진 정도를 모델링함으로써 첫째 문제를 극복한다. 두번째 확장은 클래스 기반 특징들을 제공하기 위해서 각 클래스에 대해 다른 변환을 취함으로써 둘째 문제를 극복한다. 셋째 확장은 PCA 혼합 모형의 관점에서 각 클래스를 표현함으로써 앞의 두 확장을 결합하는 것이다. 숫자 인식과 알파벳 인식에 대한 실험에서 LDA의 모든 제안된 확장들이 LDA보다 더 좋은 분류 성능을 보여 주었다.

목차

요약

Abstract

1. Introduction

2. LDA

3. PCA Mixture Model

4. Extensions of LDA

5. Simulation Results and Discussion

6. Conclusion

참고문헌

저자소개

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-015183481