메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한기계학회 Journal of Mechanical Science and Technology Journal of Mechanical Science and Technology Vol.19 No.11
발행연도
2005.11
수록면
2,032 - 2,039 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The lattice Boltzman method (LBM) and the finite difference-based lattice Boltzmann method (FDLBM) are quite recent approaches for simulating fluid flow, which have been proven as valid and efficient tools in a variety of complex flow problems. They are considered attractive alternatives to conventional finite-difference schemes because they recover the Navier-Stokes equations and are computationally more stable, and easily parallelizable. However, most models of the LBM or FDLBM are for incompressible fluids because of the simplicity of the structure of the model. Although some models for compressible thermal fluids have been introduced, these models are for monatomic gases, and suffer from the instability in calculations. A lattice BGK model based on a finite difference scheme with an internal degree of freedom is employed and it is shown that a diatomic gas such as air is successfully simulated. In this research we present a 2-dimensional edge tone to predict the frequency characteristics of discrete oscillations of a jet-edge feedback cycle by the FDLBM in which any specific heat ratio γcan be chosen freely. The jet is chosen long enough in order to guarantee the parabolic velocity profile of a jet at the outlet, and the edge is of an angle of α=23°. At a stand-off distance w, the edge is inserted along the centerline of the jet, and a sinuous instability wave with real frequency is assumed to be created in the vicinity of the nozzle exit and to propagate towards the downstream. We have succeeded in capturing very small pressure fluctuations resulting from periodic oscillation of the jet around the edge.

목차

Abstract

1. Introduction

2. Computational Methodology

3. Some results and Discussion

4. Conclusions

Acknowledgments

References

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-550-018231385