메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 수평 분산 데이터베이스에서 각 로컬 데이터베이스의 세부 데이터를 유출하지 않는 순차 패턴 마이닝 기법을 제안한다. 데이터 마이닝은 대용량 데이터베이스에서 유용한 지식을 추출하는 기법으로서 각광을 받고 있다. 그러나 분산 데이터베이스를 대상으로 마이닝을 수행하는 경우, 데이터 공유에 따른 개인 혹은 집단의 프라이버시가 유출될 수 있다는 문제점이 존재한다. 따라서 본 논문에서는 프라이버시 보호를 위하여 각 로컬 데이터베이스의 세부 데이터를 보호하면서도 ... 전체 초록 보기

목차

요약

1. 서론

2. 관련 연구

3. 제안하는 기법

4. 결론

참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-018002036