메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
Korean Institute of Information Scientists and Engineers 정보과학회논문지 : 소프트웨어 및 응용 정보과학회논문지 : 소프트웨어 및 응용 제31권 제12호
발행연도
2004.12
수록면
1,569 - 1,580 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
베이지안 네트워크는 불확실한 상황을 모델링하기 위한 확률 기반의 모델로서 확실한 수학적 토대를 가지고 있다. 베이지안 네트워크의 구조를 자동 학습하기 위한 연구가 많이 있었고, 최근에는 진화알고리즘을 이용한 연구가 많이 진행되고 있다. 그러나 대부분은 마지막 세대의 가장 좋은 개체만을 이용하고 있다. 시스템이 요구하는 다양한 요구 조건을 하나의 적합도 평가 수식으로 나타내기 어렵기 때문에, 마지막 세대의 가장 좋은 개체는 종종 편향되거나 변화하는 환경에 덜 적응적일 수 있다. 본 논문에서는 적합도 공유 방법으로 다양한 베이지안 네트워크를 생성하고, 이를 베이즈 규칙을 통해 결합하여 변화하는 환경에 적응적인 추론 모델을 구축할 수 있는 방법을 제안한다. 성능 평가를 위해 ASIA와 ALARM 네트워크에서 인공적으로 생성한 데이타를 이용한 구조 학습 및 추론 실험을 수행하였다. 다양한 조건에서 학습된 네트워크를 실험한 결과, 제안한 방법이 변화하는 환경에서 더욱 강건하고 적응적인 모델을 생성할 수 있음을 알 수 있었다.

목차

요약

Abstract

1. 서론

2. 배경

3. 종 분화된 진화 베이지안 네트워크 앙상블

4. 실험 결과

5. 결론

참고문헌

저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017891297