메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 적응적 가중치 함수를 이용하여 블록 단위의 모션 벡터를 필터링하는 방법을 제안한다. 제안하는 방법에서는 먼저 인접한 영상을 받아 들여 가변적 크기의 블록 정합 방법을 이용하여 모션 벡터를 추출한다. 그리고 추출된 모션 벡터를 강건 예측에 적용하여 아웃라이어(outlier)를 제거함으로써 강건 예측에서 사용하는 동작 모델에 근접한 모션 벡터만을 추출한다. 제안된 적응적 강건 예측은 연속적인 시그모이드 가중치 함수를 사용하여 정상 자료와 아웃라이어의 소속 정도를 보다 효과적으로 표현한다. 또한, 최소화 기법의 반복 단계에서 잔여에러가 감소함에 따라 점진적으로 시그모이드 가중치 함수를 조율함으로써 정상 자료와 아웃라이어를 보다 유연하게 분리한다. 실험에서는 카메라의 동작이 포함된 비디오 데이타를 입력 받아 성능을 비교 분석함으로써 제안한 방법의 우수함을 보인다.

목차

요약

Abstract

1. 서론

2. 모션 벡터 추출

3. 모션 벡터 필터링

4. 실험 결과 및 결론

참고문헌

저자소개

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017891202