메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
이미지에 인위적 또는 자연적으로 포함된 텍스트는 이미지의 내용을 함축적이고 구체적으로 표현하는 중요한 정보이다. 이러한 정보를 실시간에 추출하여 정확히 인식할 수 있다면 다양한 분야에서 활용될 수 있다. 본 논문에서는 자연이미지에 포함된 장면 텍스트를 추출하는 방법으로서 텍스트의 색 연속성, 밝기 변화 및 색 변화와 같은 낮은 수준의 이미지 특징으로 텍스트 후보 영역을 찾고, 다해상도 (Multi-resolution) 웨이블릿(Wavelet) 변환을 이용하여 높은 수준의 텍스트 특징인 획의 구성 여부로 검증하는 계층적인 구조를 제안한다. 색 연속성 특징은 대부분의 텍스트는 동일한 색으로 구성된다는 특징을 이용하는 것이고, 밝기 변화 특징은 텍스트 영역은 주변과의 밝기 변화가 존재하며 에지 밀도가 높은 특징을 이용한다. 또한, 색 변화 특징은 텍스트 영역은 주변 배경과의 색 변화가 존재하며, 밝기 변화보다 민감한 색 분산값으로 표현할 수 있다는 장점을 이용한다. 높은 수준의 텍스트 특징으로서 다해상도 웨이블릿 변환을 이용하여 텍스트 획의 방향성 정보를 추출하고, 추출된 정보를 SVM(Support Vector Machine) 분류기로 검증하여 최종 영역을 확정한다. 제안한 방법을 다양한 종류의 이미지에 적용한 결과 배경이 복잡해도 비교적 안정적으로 텍스트 영역을 추출하는 것을 확인할 수 있었다.

목차

요약

Abstract

1. 서론

2. 제안 방법

3. 텍스트 영역 추출

4. 검증

5. 실험 및 결과

6. 결론

참고문헌

부록

저자소개

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017890210