메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
대부분의 추천 시스템에서는 개인의 선호 정보를 바탕으로 한 내용-기반 추천 기법과 다른 사람들로부터의 추천을 기반으로 한 사회적 추천 기법을 사용한다. 이들 두 기법은 각각 장단점을 갖고 있으며, 서로 경쟁 관계에 있다기보다 상호 보완적인 성격을 갖고 있다. 이에 두 기법의 적절한 조합이 전체추천 시스템의 질을 결정하는 관건이 된다. 본 논문에서는 사용자 개인 마다 각 기법에 대한 만족도와 의존도가 다름을 밝히고, 이러한 각 개인의 경향에 따라 여러 추천 기법의 결과를 개인별로 조합해 주는 기법을 제안하였다. 각 개인의 경향을 나타내는 척도로 충성도, 다양도, 전문가도 등의 척도를 정의하여 사용하였으며, 이 원리에 의해 동작하는 조합 엔진의 결과는 최고 40%, 평균 23%의 coverage 개선 효과를 나타내었다.

목차

요약

Abstract

1. 서론

2. 관련 연구(related work)

3. 사례(motivating example)

4. 사용자 경향(user tendency)과 취향 공간 (taste space)

5. 시스템 구조

6. 실험

7. 토론 및 결론

8. 감사의 글(Acknowledgements)

참고문헌

저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017889957