메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
결정트리 생성은 특징값들로 기술된 사례들로부터 분류 규칙을 추출하는 유용한 기계학습 방법중 하나이다. 결정트리는 특징공간을 분할하는 형태에 따라 단변수(univariate) 결정트리와 다변수(multivariate) 결정트리로 대별된다. 실제 현장에서 얻어지는 데이터는 관측오류, 불확실성, 주관적인 판단 등의 이유로 특징값 자체에 오류를 포함하는 경우가 많다. 이러한 오류에 대해 강건한 결정트리를 생성하기 위한 방법으로 퍼지 기법을 도입한 결정트리 생성 방법에 대한 연구가 진행되어 왔다. 현재까지 대부분의 퍼지 결정트리에 대한 연구는 단변수 결정트리에 퍼지 기법을 도입한 것들이며, 다변수 결정트리에 퍼지 기법을 적용한 것은 찾아보기 힘들다. 이 논문에서는 다변수 결정트리에 퍼지 기법을 적용하여 퍼지 사선형 결정트리라고 하는 퍼지 결정트리를 생성하는 방법을 제안한다. 또한 제안한 결정트리 생성 방법의 특성을 보이기 위한 실험 결과를 보인다.

목차

요약

Abstract

1. 서론

2. 결정트리와 퍼지 결정트리

3. 퍼지 사선형 결정트리

4. 실험 및 분석

5. 결론

참고문헌

부록

저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017862836