메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
진화 신경망은 기존의 경험적 지식 대신에 진화 알고리즘의 전역 탐색 능력을 사용해서 최적의 신경망을 찾는다. 하지만 실세계의 복잡한 문제는 하나의 신경망으로 해결하기 어려운 경우가 많기 때문에 최근에 하나 이상의 신경망을 결합한 다중 신경망에 관한 연구가 활발히 진행되고 있다. 본 논문에서는 진화과정 중 상호보완 가능한 다양한 신경망을 얻기 위한 종분화 방식을 제안한다. 또한 적합도 공유를 통해 종분화된 진화 신경망의 결과를 효과적으로 결합하기 위해 추상 레벨, 순위 레벨, 측정치 레벨의 여러 결합 방법을 이용한 다중 신경망 시스템을 개발한다. UCI 데이타베이스의 벤치마크 문제 중 호주 신용카드 승인 데이타에 대하여 실험한 결과, 종분화를 사용해 탐색한 신경망을 결합한 경우는 더 높은 인식률을 보였으며 Borda 결합의 경우 0.105의 오류율을 보여 제안한 방법이 효과적임을 알 수 있었다.

목차

요약

Abstract

1. 서론

2. 관련 연구

3. 종분화 신경망의 진화

4. 다중 신경망의 결합

5. 실험결과

6. 결론

참고문헌

저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017862694