메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
연속패턴은 다양한 분야에서 사용되는 데이타 마이닝 기법의 한 종류이다. 하지만 현재의 연속패턴 방법은 한개의 속성내에서의 패턴만을 감지할 수 있으며 속성간의 패턴을 생성할 수 없다. 다차원의 연속패턴은 일차원에 비하여 훨씬 유용한 정보를 제공할 수 있다. 본 연구에서는 Hellinger 엔트로피 함수를 사용하여 다차원의 연속패턴을 생성하는 방법을 제시한다. 기존의 연속패턴방법과 달리 본 방법에서는 각 연속패턴의 중요도를 자동으로 계산할 수 있다. 또한 계산의 복잡도를 감소시키기 위한 다수의 법칙이 개발되었으며 다수의 실험 결과를 제시하였다.

목차

요약

Abstract

1. Introduction

2. Information Content of Sequential Patterns

3. Properties of H Measure

4. Sequential Pattern Generation

5. Experimental Results

6. Conclusion

References

저자소개

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017824454