메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
Korean Institute of Information Scientists and Engineers 정보과학회논문지 : 소프트웨어 및 응용 정보과학회논문지 : 소프트웨어 및 응용 제28권 제4호
발행연도
2001.4
수록면
338 - 345 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 연구에서는 시계열자료를 예측하기 위해 적용한 n×n×1 신경망 구조에서 초기값의 시각적인 선택을 통한 개선된 학습과정을 제안한다. 적용된 Easton[1]의 제어상자는 시각적인 면과 실용적인 적용측면에서 다차원 구조를 논의하기에는 제한적이지만, 적은 개수의 은닉노드를 갖는 단순한 신경망구조에서는 초기 가중값들의 동적인 선택을 통하여 가능한 빨리 효과적인 학습이 이루어질 수 있게 할 수 있다. 신경망 학습의 오차 판단기준은 기존의 평균제곱오차(MSE)를 고려한다. 실증연구에는 모의생성된 ARMA(1,0) 자료와 담배생산량 자료를 이용한다.

목차

요약

Abstract

1. 서론

2. 신경망의 구조와 학습과정

3. 예제

4. 결론

참고문헌

저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017823593