메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
한국지능정보시스템학회 한국지능정보시스템학회 학술대회논문집 한국지능정보시스템학회 2005년 춘계학술대회논문집
발행연도
2005.5
수록면
131 - 138 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Recommender systems have been widely advocated as a way of coping with the problem of information overload in e-business environment. Most of the existing recommender systems focused on what kind of items to recommend, although when to recommend to the target customer considering their context is an important issue. Even right item might be a spam advertisement or wrong recommendation for the customer if it can not be recommended at the right context. It is particularly important for recommendations where the user's context is changing rapidly, such as in both handheld and ubiquitous computing environment. Therefore, we propose CARS (Context-Aware Recommender System) based on CBR and context-awareness for ubiquitous computing environment. CBR is used to generate a target customer class and proper context. Context-awareness is used to gather user context information from sensors, networks, device status, user profiles, and other sources. An illustrative case example is suggested to explain the procedure of CARS.

목차

Abstract

1. Introduction

2. Related work

3. Overall procedure for implementing CARS

5. An illustrative case example

6. Conclusion

References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-003-017820068