메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
컨테이너 터미널에서는 장치장으로 반입되는 수출 컨테이너의 무게를 몇 단계 그룹으로 나누고 각 무게그룹 별로 모아서 장치한다. 이는 수출 컨테이너를 선박에 싣는 적하작업 시 선박의 안정성을 위하여 무거운 무게그룹의 컨테이너들을 장치장에서 먼저 반출하여 선박의 바닥 쪽에 놓기 위함이다. 하지만 반입되는 컨테이너의 무게그룹을 결정할 때 사용하는 운송사로부터 받는 무게정보는 부정확한 경우가 많아 하나의 스택(stack)에 서로 다른 무게그룹에 속하는 컨테이너들이 섞이게 된다. 이로 인하여 무거운 무게그룹의 컨테이너를 반출할 때 해당 컨테이너의 상단에 놓여진 보다 가벼운 무게그룹의 컨테이너들을 임시로 옮겨야 하는 재취급(rehandling, reshuffling)이 발생하게 된다. 적하작업 시 장치장에서 재취급이 빈번히 발생하면 작업이 지연되므로 터미널 생산성 향상을 위해서는 재취급 발생을 가급적 줄여야 한다. 본 논문에서는 기계학습 기법을 적용하여 반입 컨테이너의 무게그룹을 보다 정확히 추정하는 방안을 제안한다. 또한 탐색을 통하여 분류기 생성에 관여하는 비용행렬(cost matrix)을 조정함으로써 재취급 발생을 줄일 수 있는 분류기(classifier)를 생성하는 방안을 함께 소개한다. 실험 결과 본 논문에서 재안하는 방안 적용 시 재취급 발생을 5~7% 정도 줄일 수 있음을 예상할 수 있었다.

목차

요약

1. 서론

2. 관련 연구

3. 재취급 발생률 추정 방안

4. 학습을 이용한 컨테이너 무게그룹 분류

5. 실험 결과 및 분석

6. 결론 및 향후 연구

참고문헌

감사의 글

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-003-017820008