메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
기존의 블록 정합 알고리즘인 FS(Full Search)알고리즘은 정확한 움직임 벡터를 구할 수 있으나 요구되는 계산량이 많다. 반면에 국부 탐색을 하는 고속 블록 정합 알고리즘은 FS보다 빠른 탐색을 할 수 있으나 FS 보다 정합 오차가 크다.
본 연구는 전역탐색을 하는 유전자 알고리즘에 빠른 탐색을 하는 블록 정합 알고리즘인 NTSS(New Three Step Search)알고리즘을 제안한다. 제안한 방법에서 각 염색체는 움직임 벡터를 표현하며 초기 염색체는 탐색 공간의 중심 탐색점 가까이에 고정적으로 발생시키고 각 염색체는 MSE(Mean Square Error)값으로 평가된다. 평가된 염색체 중 작은 MSE값을 가지는 염색체가 NTSS의 탐색점 수만큼 다음 세대의 탐색점으로 선택된다. 선택된 염색체는 세대를 거치면서 돌연변이 연산과 교배연산이 행해지고 이때 돌연변이 연산의 크기는 NTSS의 탐색 단계 크기가 된다. 제안한 세대 수 만큼 반복 후 최소의 MSE 값을 가지는 유전자가 해당 블록의 움직임 벡터가 된다.
시뮬레이션 결과 제안한 방법은 가장 우수한 성능을 가지는 FS와 유사한 MSE 값을 얻을 수 있었고 동시에 FS에서 요구되는 계산량에 비해 많은 계산량을 줄일 수 있었다.

목차

요약

Abstract

1. 서론

2. 블록정합 알고리즘과 유전자 알고리즘

3. 제안하는 NTSS 유전자 알고리즘을 이용한 움직임 추정

4. 실험 및 결과고찰

5. 결론

참고문헌

저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017797598