메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper presents a new coarse-grained parallel genetic algorithm for the document allocation problem in multiprocessor information retrieval (IR) systems. The objective is to find an optimal mapping of a clustered collection of documents onto the multiple processing nodes such that the average cluster diameter is kept to a minimum while providing for an even document distribution across the nodes. In this paper, we prove the given problem to be NP-complete and describe a heuristic algorithm that supports efficient access to the clustered document allocation. Our parallel genetic algorithm is based on a hybrid of the island and the neighborhood models in which the distributed population structure has the advantage of inherent parallelism and thus reducing the possibility of premature convergence. The parallel algorithm has been developed for a distributed-memory multiprocessor IR system, and the performance was evaluated. We empirically investigate the effects of varying the distribution of documents across the clusters, the impacts of the data skewness, and the effects of replicating documents at different nodes in the multiprocessor IR system. As part of the experimental analysis, we also study the impacts of varying the system parameters, the migration period, the migration volume, the probability of mutation, and the population size. We present our experimental observation, including the solution quality of allocation and the scale-up speedup and time, for a behavioral evaluation.

목차

Abstract

Ⅰ. Introduction

Ⅱ. Problem Formulation

Ⅲ. Sequential Genetic Algorithm

Ⅳ. Parallel Genetic Algorithm

Ⅴ. Experimental Results

Ⅵ. Conclusions

Acknowledgements

References

저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017770220