메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper proposes a two dimensional evaluation scheme in genetic algorithms for improving their evolution ability. The main idea of this paper is to take into account not only the fitness of individuals, but also their improved fitness in the evaluation of genetic algorithms. This evaluation operation provides some individuals---whose fitness values are relatively small. but whose improved fitness values are considerably large---with more chances to take part in the evolution. This evaluation operation prevents genetic algorithms from falling into a premature convergence phenomenon especially in complex optimization problems with many local maxima. The performances of genetic algorithms with the original and proposed evaluation scheme were compared with five function optimization problems and one combination problem. It was found through extensive experiments that genetic algorithms with the proposed evaluation scheme outperform those with the original evaluation scheme. This evaluation scheme can be incorporated into other genetic algorithms to improve their performances.

목차

Abstract

Ⅰ. Introduction

Ⅱ. A Brief Review of Genetic Algorithm

Ⅲ. Two Dimensional Evaluation Scheme

Ⅳ. Experimental Results and Discussion

Ⅴ. Conclusion

Acknowledgements

References

저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017770119