메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
A method for locating the minimum eigenvalue and its corresponding eigenvector is considered. The core procedure utilized is the modified Rayleigh quotient iteration (MRQI). The convergence rate of the Rayleigh quotient iteration (RQI) is cubic. However, unfortunately, the RQI may not always locate the minimum eigenvalue. In this paper, a new MRQI that can always locate the minimum eigenpair is given. Based on the MRQI, a fast algorithm to locate minimum eigenpair will be proposed. This method has the following characteristics. First, it does not compute the inclusion interval. Second, it works for any Hermitian matrix as well as Toeplitz matrix. Third, it works on matrices having more than one minimum eigenvalue. Fourth, the numerical error of this method is very small. Lastly, it is attractively simple and fast. The convergence rate of this method is asymptotically cubic. MATLAB simulation results show that tills method may outperform other methods, The term MRQI has been already used. Differences in several MRQI methods are discussed. Mathematical properties of the MRQI are investigated.
This research can be effectively applied to diverse field of the signal processing including communication, because the signal space can be efficiently obtained.

목차

Abstract

Ⅰ. Introduction

Ⅱ. Inclusion Intervals

Ⅲ. DErivation Of A New Mrqi Algorithm

Ⅳ. Comparison Of The Properties

Ⅴ. Fast Algorithm To Locate Minimum Eigenpair

Ⅵ. Simulation Results

Ⅶ. Conclusion

Appendix

Acknowledgement

References

저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017769927