메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The learning speed of a back-propagation neural network greatly depends on its learning rate. For selecting proper learning rates, many approaches-empirical, deterministic, and stochastic methods-have been introduced to date. Some researchers have also tried to find sub-optimal learning rates using various techniques at each training step. This paper proposes a new stochastic method. Our method selects sub-optimal learning rates by an evolutionary adaptation of learning rates for each layer at every training step. We experimented with one relatively simple mapping problem and two complex mapping problems using our method and three typical adaptive methods. Through experiments, we found that the performance of our method is superior to those of the three other methods, especially where the mapping problems are complex. However, evolutionary adaptation with evolutionary programming method generally takes much longer to execute than other adaptive methods. We also experimented with the effect of the performance of our method according to evolutionary adaptation intervals, called windows. This paper describes our selecting algorithm, the other three methods, the window technique, and experimental results.

목차

Abstract

Ⅰ. Introduction

Ⅱ. Basic Learning Method and Previous Learning Rate Selection Algorithms

Ⅲ. Our Learning Rate Selection Method

Ⅳ. Experimental Results and Discussion

Ⅴ. Window technique

Ⅵ. Conclusion

References

저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017766355