메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Two asymptotic analyses of the queue length distribution at a statistical multiplexor supporting heterogeneous exponential on-off sources are considered. The first analysis is performed by approximating the cell generation rate as a multi-dimensional Omstein-Uhlenbeck process and then applying the Benes queueing formula. In the second analysis, we start with a system of linear equations derived from the exact expressions of the dominant eigenvalue of the matrix governing the queue length distribution. Assuming that there are a large number of sources, we obtain asymptotic approximations to the dominant eigenvalue. Based on the analyses, we define a traffic descriptor to include the mean and the variance of the cell generation rate and a burstiness measure. A simple expression for the quality of service (QoS) in cell loss rate is derived in terms of the traffic descriptor parameters and the multiplexor parameters (output link capacity and buffer size). This result is then used to quantify the factors determining the required capacity of a call taking the statistical multiplexing gain into consideration. As an application of the analyses, we can use the required capacity calculation for simple yet effective connection admission control (CAC) algorithms.

목차

Abstract

Ⅰ. Introduction

Ⅱ. Known Results and Assumptions

Ⅲ. Asymptotic Analysis Ⅰ

Ⅳ. Asymptotic Analysis Ⅱ

Ⅴ. Required Channel Capacity, Performance Measure and Traffic Descriptors

Ⅵ. Measurement of Traffic Descriptor Values

Ⅶ. Conclusions

Appendices

Acknowledgement

References

저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017764442