메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
Korean Institute of Information Scientists and Engineers 정보과학회논문지(A) 정보과학회논문지(A) 제26권 제1호
발행연도
1999.1
수록면
107 - 116 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
대칭성(symmetry)은 그래프의 구조와 특성을 시각적으로 표현할 때 중요한 미적 기준 중의 하나이다. 또한 대칭성을 보여주는 드로잉은 전체 그래프가 크기가 작은 부그래프들로 부터 반복적으로 구성됨을 보여줌으로써 전체 그래프에 대한 이해를 쉽게 해주는 장점이 있다. 하지만 일반적인 그래프에서 기하학적 대칭성(geometric symmetry)을 탐지하는 문제는 이미 NP-complete 임이 증명되었으므로 이에 대한 연구는 평면 그래프(planar graph)의 극히 제한적인 부분집합인 트리, 외부 평면 그래프, 임베딩된(embedded) 평면 그래프 등에 초점이 맞추어져 왔다.
본 논문에서는 평면 그래프에서의 기하학적 대칭성 문제를 연구하였다. 평면 그래프를 이중 연결 성분들로 분할한 다음 이를 각각 다시 삼중 연결 성분들로 분할하여 트리를 구성하고 축소(reduction) 개념을 도입함으로써 기하학적 대칭성을 탐지하는 O(n²)시간 알고리즘을 제시하였다. 여기서 n은 그래프의 정점의 개수이다. 이 알고리즘은 평면 그래프를 최대한 대칭적으로 드로잉하는 알고리즘 개발에 이용될 수 있다.

목차

요약

Abstract

1. 서론

2. 기하학적 대칭성

3. 평면 그래프의 기하학적 대칭성 탐지 알고리즘

4. 결론

참고문헌

저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-017742477