메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한기계학회 Journal of Mechanical Science and Technology Journal of Mechanical Science and Technology Vol.19 No.1
발행연도
2005.1
수록면
199 - 208 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this study a newly designed microchannel as an efficient fluid-mixer is proposed. This design is comprised of a channel and a series of blocks periodically attached on the bottom surface of the channel. In this configuration, the stirring is greatly enhanced at a certain range of parametric values. To characterize the flow field and the stirring effect, both numerical and experimental methods were employed. To obtain the velocity field, three-dimensional numerical computation to the Navier Stokes equations was performed by using a commercial code, FLUENT 6.0. The fluid-flow solutions were then cast into studying the characteristics of stirring with the aid of Lyapunov exponent. In this study. the Lyapunov exponents were computed manually because the commercial code does not provide the corresponding tool. In the experiment, flow visualization was performed by using pure glycerin in a tank and glycerin mixed with small amount of a fluorescent dye in the other tank. The numerical results show that the pattern of the particles' trajectories in the microchannel heavily depends on the block arrangement. It was shown that the stirring is significantly enhanced by a larger block-height and reaches maximum when the height is 0.8 times the channel width. We also studied the effect of the block stagger angle. It was found that stirring performance is the best at the block stagger angle of 45°.

목차

Abstract

1. Introduction

2. Flow Model and Numerical/Experimental Methods

3. Results and Discussion

4. Conclusions

Acknowledgments

References

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-550-014541464