메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국지능정보시스템학회 지능정보연구 한국지능정보시스템학회논문지 제10권 제2호
발행연도
2004.11
수록면
53 - 63 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
순환 케스케이드 코릴레이션 (Recurrent Cascade Correlation(RCC)) 은 감독에 의하여 학습하는 알고리즘이고 네트워크의 크기와 형태는 자동으로 이루어진다. RCC 는 새로운 은닉뉴런들이 한 충에 하나씩 순서대로 네트워크에 삽입되기 때문에 다층구조를 형성하고 2계 (Second Order) RCC 는 새로운 은닉뉴런들이 한 층에만 순서대로 생성 되어 나열되므로 2 충 구조를 형성한다. 따라서 이러한 은닉뉴런들끼리는 서로 연결하지 않는다. 이 논문에서는 RCC 와 2계 RCC 의 조합을 통한 RCC 네트워크의 일반화를 소개한다. 새로운 RCC 알고리즘은 은닉뉴런이 네트워크에 첨가될 때마다 네트워크가 수직성장 또는 수평성장을 해야 하는지를 스스로 결정한다. 또한 뉴런의 활성화를 위한 새로운 활성화함수를 소개하고 기존의 sigmoid, tanh 함수와 함께 사용하여 모스 벤치마크 문제에 관하여 실험하였다. 이러한 활성화 합수들을 사용한 RCC 네트워크의 일반화 실험에서 은닉뉴런의 숫자가 감소하였음을 알 수 있다.

목차

초록

1. 서론

2. 관련연구

3. 제안된 방법

4. 실험 및 성능 분석

5. 결론 및 연구과제

참고문헌

Abstract

참고문헌 (9)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-003-014417812