메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한기계학회 Journal of Mechanical Science and Technology KSME International Journal Vol.17 No.3
발행연도
2003.3
수록면
409 - 421 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The hierarchical recursive local-correlation PIV algorithm with CBC (correlation based correction) method was employed to increase the spatial resolution of PI V results and to reduce error vectors. The performance of this new PIV algorithm was tested using synthetic images, PIV standard images of Visualization Society of Japan, real flows including ventilation flow inside a vehicle passenger compartment and wake behind a circular cylinder with riblet surface. As a result, most spurious vectors were suppressed by employing the CBC method, the hierarchical recursive correlation algorithm improved the sub-pixel accuracy of PIV results by decreasing the interrogation window size and increased spatial resolution significantly. However, with recursively decreasing of interrogation window size, the SNR (signal-to-noise ratio) in the correlation plane was decreased and number of spurious vectors was increased. Therefore. compromised determination of optimal interrogation window size is required for given f10w images, the performance of recursive algorithm is also discussed from a viewpoint of recovery ratio and error ratio in the paper.

목차

Abstract

1.Introduction

2.Hierarchical Recursive Correlation Algorithm and CBC

3.Performance Tests and Discussion

4.Conclusion

Acknowledgment

References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-550-014050622