메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한기계학회 Journal of Mechanical Science and Technology KSME International Journal Vol.16 No.12
발행연도
2002.12
수록면
1,604 - 1,612 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Rollers in the continuous process systems are ones of key components that determine the quality of web products. The condition of rollers (e.g. eccentricity, runout) should be consistently monitored in order to maintain the process conditions (e.g. tension, edge position) within a required specification. In this paper, a new diagnosis algorithm is suggested to detect the defective rollers based on the frequency analysis of web tension signals. The kernel of this technique is to use the characteristic features (RMS, Peak value, Power spectral density) of tension signals which allow the identification of the faulty rollers and the diagnosis of the degree of fault in the rollers. The characteristic features could be used to train an artificial neural network which could classify roller conditions into three groups (normal, warning, and faulty conditions). The simulation and experimental results showed that the suggested diagnosis algorithm can be successfully used to identify the defective rollers as well as to diagnose the degree of the defect of those rollers.

목차

Abstract

1.Introduction

2.Theoretical Background

3.The Proposed Diagnosis Algorithm for a Roller-Shape Fault

4.Simulations for the Algorithm Verification

5.Experimental Evaluation

6.Conclusions

Acknowledgment

References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-550-014050046