메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한전자공학회 전자공학회논문지-SP 전자공학회논문지 SP편 제40권 제6호
발행연도
2003.11
수록면
90 - 97 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문은 FSVQ(first section vector quantization)와 퍼지 개념을 이용한 HMM(hidden Markov model)에 기초를 둔 음성인식을 제안한다. 제안된 연구 방법에서는 첫 번째 구간의 코드북(codebook)을 만든 후, 첫번째 구간의 코드북으로부터, 퍼지 개념을 도입하여 확률값이 큰 순서에 의해 다중 관측열을 구한다. 그 다음, 코드북으로부터 첫 번째 구간의 관측열을 학습시키고, 인식할 때에도 같은 개념으로 첫 번째 구간에서의 확률값이 가장 높은 단어를 인식된 단어로 선택한다. 인식 대상 어휘로는 전철역명을 선택하였으며, 특징 파라메타로는 LPC 켚스트럼을 사용하였다. 제안된 방법에 의한 인식 실험을 수행하는 것 이외에도 비교를 위하여 이전에 실험한 몇 가지 방법의 인식 실험을 같은 조건하에서 같은 데이터로 수행한다. 실험 결과, 본 연구에서 제안한 FSVQ와 퍼지 개념을 이용한 HMM에 기초를 둔 방법이 다른 음성 인식 방법들보다 인식률이 우수함을 입증하였다.

목차

요 약

Abstract

Ⅰ. 서 론

Ⅱ. 제안된 시스템

Ⅲ. 인식 실험 결과

Ⅳ. 결 론

참 고 문 헌

저 자 소 개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-013756633