메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국지능정보시스템학회 지능정보연구 한국지능정보시스템학회논문지 제9권 제3호
발행연도
2003.12
수록면
65 - 79 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
운송 컨테이너의 식별자를 추출하고 인식하는 것은 컨테이너 식별자들의 크기나 위치가 정형화되어 있지 않고 외부의 잡음으로 인하여 식별자의 형태가 훼손되어 있기 때문에 어렵다. 본 논문에서는 이러한 특성을 고려하여 컨테이너 영상에 대해 Canny 마스크를 이용하여 에지를 검출하고, 검출된 에지 정보를 이용하여 수직 블록과 수평 블록을 추출하여 컨테이너의 식별자 영역을 추출한다. 추출된 컨테이너의 식별자 영역에서 윤곽선 추적 알고리즘을 이용하여 개별 식별자를 추출하며, 그들의 인식을 위해서는 개선된 ART1과 지도 학습 방법을 결합한 개선된 성능의 자가 생성 지도 학습 알고리즘을 제안하여 적용한다. 제안된 방법의 성능을 확인하기 위하여 운송 컨테이너 영상들을 대상으로 실험 결과, 윤곽선 추적 알고리즘을 이용한 식별자의 추출 방법이 히스토그램을 이용한 식별자의 추출 방법보다 추출률이 개선되었고 인식 결과에서도 개선된 ART1 기반 자가 생성 지도 학습 방법이 기존의 ART1 기반 자가 생성 지도 학습 방법보다 인식률이 향상되었다.

목차

1. 서론

2. 관련 연구

3. 제안된 운송 컨테이너 식별자 추출 및 인식

4. 실험 및 결과 분석

4. 결론 및 향후 연구 방향

참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-003-013738501