메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
ATM ABR service controls network traffic using feedback information on the network congestion situation in order to guarantee the demanded service qualities and the available cell rates. In this paper we apply the control method using queue length prediction to the formation of feedback information for more efficient ABR traffic
control. If backward node receive the longer delayed feedback information On the impending congestion, the switch can be already congested from the uncontrolled arriving traffic and the fluctuation of queue length can be inefficiently high in the continuing time intervals.
The feedback control method proposed in this paper predicts the queue length in the switch using the slope of queue length prediction function and queue length changes in time-series. The predicted congestion information is backward to the node. NLMS and neural network are used as the predictive control functions, and they are compared from performance on the queue length prediction. Simulation results show the efficiency of the proposed method compared to the feedback control method without the prediction. Therefore, we conclude that the efficient congestion and stability of the queue length controls are possible using the prediction scheme that can resolve the problems caused from the longer delays of the feedback information.

목차

Abstract
1. Introduction
2. A predictive feedback control model
3. Simulation
4. Conclusion
Reference

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-003-013676722