메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국통신학회 한국통신학회논문지 한국통신학회논문지 제28권 10C호
발행연도
2003.10
수록면
1,007 - 1,012 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Multilayer perceptrons (MLPs)를 위한 일반적인 BP 알고리즘의 학습 속도를 개선하기 위하여 제약을 갖는 최적화 기술을 제안하고 이를 backpropagation (BP)알고리즘에 적용한다. 먼저 잡음 제약을 갖는 LMS(noise constrained least mean square : NCLMS) 알고리즘과 영잡음 제약 LMS(ZNCLMS) 알고리즘을 BP 알고리즘에 적용한다. 이러한 알고리즘들은 다음과 같은 가정을 반드시 필요로 하여 알고리즘의 이용에 많은 제약을 갖는다.
NCLMS 알고리즘을 이용한 NCBP 알고리즘은 정확한 잡음 전력을 알고 있다고 가정한다. 또한 ZNCLMS 알고리즘을 이용한 ZNCBP 알고리즘은 잡음의 전력을 0으로 가정, 즉 잡음을 무시하고 학습을 진행하다. 본 논문에서는 확장된(augmented) Lagrangian multiplier를 이용하여, 비용함수(cost function)를 변형한다. 이를 통하여 잡음에 대한 가정을 제거하고 ZNCBP와 NCBP 알고리즘을 확장, 일반화하여 적응 오류 제약 BP(adaptive error constrained BP : AECBP) 알고리즘을 유도, 제안한다. 제안한 알고리즘들의 수렴속도는 일반적인 BI알고리즘보다 약 30배정도 빠른 학습 속도를 나타내었으며, 일반적인 선형 필터와 거의 같은 수렴속도를 나타내었다.

목차

요약
ABSTRACT
I. 서론
II. 잡음제약 BP (NCBP) 알고리즘
III. 적응오류제약 BP(AECBP) 알고리즘
IV. 실험 결과
V. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-567-013662710