메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국경영과학회 경영과학 경영과학 제20권 제1호
발행연도
2003.5
수록면
25 - 36 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Now that many organizations have invested a tremendous amount of money and efforts to operate web sites on the Internet there is a strong demand to understand the effectlveness of such investments In other words one of most frequent and important questions about their web sites is "Will the current Web site management pollcy be effective enough to have more visitors come to our Web site?"
In this paper a system which predicts the degree of user interest in the future to Web sites is constructed.The degree of user Interest to a Web site is defined to be the visit counts for the Web site in the system. With higher the visit counts.the related site is considered to be more interesting However, the figures of the visit counts themselves cannot explain properly the degree of user interest in the future to the related Web sites(ie the effectiveness of the related web sites). Therefore,the system also uses mechanisms which use the concept of the Moving Averages, which have been used frequently in the stock exchanges.
In this paper, two prediction mechanisms are proposed and compared. The first mechanism uses the Golden cross/the Dead cross of the Moving Averages, while the second mechanism uses the changes of upward/down ward direction of the Moving Averages. Experimental results show that the two prediction mechanisms proposed in this paper predict the degree of user interest in the future to the related Web sites very well in most cases However the first one is considered to be better than teh second one in the sense that the second one is too much sensitive to the changes of visit counts.
Keyword: Website Management User Internet Moving Average

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-325-013372895