본문 바로가기

김재영 논문수  · 이용수 4,871 · 피인용수 59

소속기관
한성대학교
소속부서
경영학과
주요 연구분야
사회과학 > 경영학 공학 > 산업공학 공학 > 컴퓨터학 공학 > 전기전자공학 > 전기공학
연구경력
-
  • 저자정보 . 논문
  • 공저자 . 저널

저자의 연구 키워드

저자의 연구 키워드
#개인화상품추천
#규범적 몰입
#기계학습
#보상전략
#수요예측
#실증적 접근
#재택근무제
#정서적 몰입
#지속적 몰입
#추천시스템
#혁신
#혁신기술 공개
#협업 필터링
#affective commitment
#Blockchain
#Business Model
#Business Opportunity
#Business Value
#Collaborative Filtering
#continuous commitment
#Cryptocurrency Price Prediction
#Customer-Driven Strategy
#Deep Learning
#Demand forecast
#Disappointment
#Disruptive Innovation
#e-Government success
#Electronic Commerce
#Entrepreneurial Capabilities
#Entrepreneurship
#Evolution Process
#Feature Selection
#Financial Service
#Fin-Tech
#Forward Backward Linkage Effect
#home-based working
#Information Sharing
#Information system quality
#Information systems success
#Information Techlologies
#Innovation activities measure
#Internet Portals
#Internet Shopping Mall
#Interregional Input-Output Analysis
#involvement
#iPhone
#Knowledge Sharing
#Knowledge-based View of Firm
#Knowledge-Intensive Business Service
#Korean Manufacturing
#Literature Review
#Logical model for evaluation
#LSTM(Long Short-Term Memory)
#Machine Learning
#Mass Customization
#M-Commerce
#Metadata
#Mobile Telecommunication Industry
#Movie Contents
#Network
#Network Operation
#Network Operator
#New Product Development
#normative commitment
#NPD Performance
#NPD Process Integration
#O2O business
#Online Contents
#Online Startup Education
#on-off density
#Ontology
#opportunity analysis
#P2P Lending Service
#Personalized Marketing
#Platform
#Portal Evolutiot
#Process Integration
#Reach
#Recommendation System
#Regional Collaborations
#Regional innovative universities
#Revenue
#reward strategy
#Richness
#Smart Factory
#Startup Education
#Strategic Factors
#Subscriber
#Supplier Development
#Supply Chain Management
#Switching Intention
#SWOT-AHP Analysis
#Teaching Models
#transaction cost
#University sustainability
#VAM (Value-based adoption model)
#Word-of-Mouth

저자의 논문

연도별 상세보기를 클릭하시면 연도별 이용수·피인용수 상세 현황을 확인하실 수 있습니다.
피인용수는 저자의 논문이 DBpia 내 인용된 횟수이며, 실제 인용된 횟수보다 적을 수 있습니다.